httpy
Release 2.0.3

Adam Jenca

Feb 27, 2024

CONTENTS

Features 3
Requirements 5
Installation 7
3.1 Anyplatform 7
3.2 Arch Linux e e e e e e e e 7
Usage 9
4.1 HTTP . . . o e e e e 9
4.2 WebSockets e e e 15
Examples 17
5.1 POSTmethod e e 17
Debugging 19

httpy, Release 2.0.3

A Python lightweight socket-based library to create HTTP(s) and WebSocket connections.

CONTENTS 1

httpy, Release 2.0.3

2 CONTENTS

CHAPTER
ONE

Cookies support

Caching support

Easy debugging

HTTP Basic and Digest authentication
Form support

Keep-Alive and Sessions support
JSON support

Sessions support

Runs in PyPy

Independent of http.client
HTTP/2 Support

Async 10 support

FEATURES

httpy, Release 2.0.3

4 Chapter 1. Features

CHAPTER
TWO

REQUIREMENTS

¢ Python>=3.6

httpy, Release 2.0.3

6 Chapter 2. Requirements

CHAPTER
THREE

3.1 Any platform

3.1.1 Git

1. git clone https://github.com/jenca-adam/httpy
2. cd httpy
3. python3 setup.py install

The Python version check will be performed automatically

3.1.2 Pip

1. python3 -m pip install httpy

3.2 Arch Linux

1. yay -S httpy

INSTALLATION

httpy, Release 2.0.3

8 Chapter 3. Installation

CHAPTER
FOUR

USAGE

REFERENCE

4.1 HTTP

It’s easy.

import httpy
resp = httpy.request("https://example.com/") # Do a request
resp.content #Access content

4.1.1 Specifying a HTTP version

Set the http_version argument, but keep in mind the following
1. You can’t make an asynchronous request using HTTP/1.1
2. HTTP/2 requests can’t be performed over insecure (http scheme) connections.

If you don’t set it, the HTTP version will be automatically detected using ALPN <https://datatracker.ietf.org/doc/html/
rfc7301>.

Valid http_version values are "1.1" and "2".

4.1.2 Non-blocking requests

import httpy
pending = httpy.request("https://example.com/", blocking = False)

PendingRequest.response returns the result of the response. You can check if the request is already done using
PendingRequest. finished

httpy.html#submodules
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7301

httpy, Release 2.0.3

4.1.3 | want cookies!

The Dir class allows you to store httpy’s data (cache and cookies) on the path of your choice. By default, the data is
stored in ~/.cache/httpy. If you want to store the data without using the Dir class, use the enable_cookies or
enable_cache argument of request. .. code-block:: python

import httpy directory = httpy.Dir(‘“your/path”) directory.request(’https://example.com/”) # ...
4.1.4 Keep-Alive requests

If you want to reuse a connection, it is highly recommended to use a Session class. It offers more control over
connection closure than the standard request

import httpy
session = httpy.Session()
session.request("https://example.com/")

HTTPy sets Connection: close by defaultin non-Session requests. If you want to keep the connection alive outside
a session, you must specify so in the headers argument.

4.1.5 Asynchronous requests

You can perform async requests using the async_request method.

The simplest use case:

import httpy

async def my_function():
return await httpy.request("https://example.com/")

If you want to perform multiple requests at once on the same connection (i.e. with asyncio.gather), use the
initiate_http2_connection method of Session:

import httpy
import asyncio

async def my_function():

session = httpy.Session()

await session.initiate_http2_connection(host="example.com")

return await asyncio.gather(*(session.async_request("https://www.example.com/") for.
—_ in range(69)))

Session and Dir and everything with a request () method has an async_request () equivalent.

10 Chapter 4. Usage

https://example.com/

httpy, Release 2.0.3

4.1.6 Response class attributes

The Response class returned by request () has some useful attributes:

Response.content

The response content as bytes. Example:

import httpy

resp = httpy.request("https://www.google.com/")
print(resp.content)

#b'!<doctype html>\n<html>...

Response.status

The response status as a Status object. Example:

import httpy

resp = httpy.request("https://www.example.com/this_url_doesnt_exist")
print(resp.status)

404

print(resp.status.reason)

NOT FOUND

print(resp.status.description)

indicates that the origin server did not find a current representation for the target.
—resource or is not willing to disclose that one exists.
print(resp.status>400)

True

Status subclasses int.

Response.history

All the redirects on the way to this response as 1ist.

Example:

import httpy

resp = httpy.request("https://httpbin.org/redirect/1")

print(resp.history)

[<Response GET [302 Found] (https://httpbin.org/redirect/1/)>, <Response GET [200 OK].
— Chttps://httpbin.org/get/)>]

Response.history is ordered from oldest to newest

4.1. HTTP 11

httpy, Release 2.0.3

Response. fromcache

Indicates whether the response was loaded from cache (bool).

Example:

import httpy

resp = httpy.request("https://example.com/")
print (resp. fromcache)

False

resp = httpy.request("https://example.com/")
print(resp. fromcache)

True

Response.request

Some of the attributes of the request that produced this response, as a Request object.

Request’s attributes

e Request.url - the URL requested (str)
* Request.headers - the requests’ headers (Headers)

* Request.socket - the underlying connection (either socket.socket or httpy.http2.connection.
HTTP2Connection)

¢ Request.cache - the same as Response. fromcache (bool)
* Request.http_version - the HTTP version used (str)
¢ Request.method - the HTTP method used (str)

Example:

import httpy

resp = httpy.request("https://example.com/")

print(resp.request.url)

https://example.com/

print(resp.request.headers)

{'Accept-Encoding': 'gzip, deflate, identity', Host': 'example.com’', 'User-Agent': 'httpy/2.
—0.0', 'Connection': 'close', 'Accept': '*/*'}

print(resp.request.method)

GET

12 Chapter 4. Usage

httpy, Release 2.0.3

Response.original_content

Raw content received from the server, not decoded with Content-Encoding (bytes).

Example:

import httpy

resp = httpy.request("https://example.com/")
print(resp.original_content)

b'\x1f\x8b\x08\x00\xc2 ...

Response.time_elapsed

Time the request took, in seconds. Only the loading time of this particular request, doesn’t account for redirects.
(float).

Example:

import httpy

resp = httpy.request("https://example.com/")
print(resp.time_elapsed)

0.2497

Response.speed

The download speed for the response, in bytes per second. (float). Might be different for HTTP/2 request. Example:

import httpy

resp = httpy.request("https://example.com/")
print(resp.speed)

2594.79

Response.content_type

The response’s Content-Type header contents, with the charset information stripped. If the headers lack
Content-Type, it’s text/html by default.

import httpy

resp = httpy.request("https://example.com/")
print(resp.content_type)

text/html

4.1. HTTP 13

httpy, Release 2.0.3

Response.charset (property)

Gets the charset of the response (str or None):
1. If a charset was specified in the response headers, return it

2. If a charset was not specified, but chardet is available, try to detect the charset (Note that this still returns None
if chardet fails)

3. If a charset was not specified, and chardet is not available, return None

Example:

import httpy

resp = httpy.request("https://example.com/")
print(resp.charset)

UTF-8

Response.string (property)

Response.content, decoded using Response.charset (str)

Warning: Do not try to access Response.string, if Response.charset is None, unless you are absolutely
sure the response data is decodable by the default locale encoding.

For ASCII responses this is probably harmless, but you have been warned!

Example:

import httpy

resp = httpy.request("https://example.com/")
print(resp.string)

#<!doctype html>

Response. json (property)

If Response.content_type is application/json, try to parse Response.string using JSON. Throw an error
otherwise.

Warning: The same as above applies.

Example:

import httpy

resp = httpy.request("https://httpbin.org/get")
print(resp.json["url"])

https://httpbin.org/get

14 Chapter 4. Usage

httpy, Release 2.0.3

Response.method

The same as Response.request.method

4.2 WebSockets

Easy again. ..

>>> import httpy

>>> sock = httpy.WebSocket("wss://echo.websocket.events/")# create a websocket.
—client (echo server example)

>>> sock.send("Hello, world!")# you can send also bytes

>>> sock.recv()

"Hello, world!"

4.2. WebSockets 15

httpy, Release 2.0.3

16 Chapter 4. Usage

CHAPTER
FIVE

EXAMPLES

5.1 POST method

5.1.1 Simple Form

import httpy
resp = httpy.request("https://example.com/", method="POST", body = {"foo":"bar"})
...

5.1.2 Sending files

import httpy

resp = httpy.request("https://example.com/", method
~"file" : httpy.File.open("example.txt") })

...

"POST", body = { "foo" : "bar",

5.1.3 Sending binary data

import httpy
resp = httpy.request("https://example.com/", method = "POST", body= b" Hello, World ! ")
...

5.1.4 Sending plain text

resp = httpy.request("https://example.com/", method = "POST", body = "I support Unicode !
-
...

17

httpy, Release 2.0.3

5.1.5 Sending JSON

resp = httpy.request("https://example.com/", method = "POST", body = "{\"foo\" : \"bar\".
—}", content_type = "application/json")

18 Chapter 5. Examples

CHAPTER
SIX

Just set debug to True :

DEBUGGING

>>> import httpy

>>> httpy.request("https://example.com/",debug=True)
[INFO] [request] (1266): request() called.
[INFO][_raw_request] (1112): _raw_request() called.
[INFO][_raw_request] (1113): Accessing cache.
[INFO][_raw_request] (1120): No data in cache.

[INFO] [_raw_request] (1151): Establishing connection

[INFO]Connection[__init__](778): Created new Connection upon <socket.socket fd=3,.
- family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=6, laddr=('192.168.

—100.88", 58998), raddr=('93.184.216.34", 443)>

send:

GET / HTTP/1.1

Accept-Encoding: gzip, deflate, identity
Host: www.example.com

User-Agent: httpy/1.1.0

Connection: keep-alive

response:
HTTP/1.1 200 OK

Content-Encoding: gzip

Age: 438765

Cache-Control: max-age=604800

Content-Type: text/html; charset=UTF-8

Date: Wed, 13 Apr 2022 12:59:07 GMT

Etag: "3147526947+gzip"

Expires: Wed, 20 Apr 2022 12:59:07 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (dcb/7F37)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 648

<Response [200 OK] (https://www.example.com/)>

19

	Features
	Requirements
	Installation
	Any platform
	Git
	Pip

	Arch Linux

	Usage
	HTTP
	Specifying a HTTP version
	Non-blocking requests
	I want cookies!
	Keep-Alive requests
	Asynchronous requests
	Response class attributes
	Response.content
	Response.status
	Response.history
	Response.fromcache
	Response.request
	Request’s attributes

	Response.original_content
	Response.time_elapsed
	Response.speed
	Response.content_type
	Response.charset (property)
	Response.string (property)
	Response.json (property)
	Response.method

	WebSockets

	Examples
	POST method
	Simple Form
	Sending files
	Sending binary data
	Sending plain text
	Sending JSON

	Debugging

